
Code::Blocks: Open Source IDE for Fortran

Darius Markauskas

 2

Code::Blocks IDE

● Open source project: http://codeblocks.org

● First commits to SVN by “mandrav” in 2004

● Development using: C++, wxWidgets, Scintilla

● Code organized into a core and plugins

● Runs on Linux, Windows, Mac (?)

● Oriented towards C++ and Fortran

 Scintilla

 3

FortranProject plugin

● Makes C::B useful for Fortran

● There are other parts in IDE too,
where Fortran specific code is
included: Fortran compilers,
SmartIndentFortran plugin…

● Was started in 2010 by “darmar” (me)

● About 29k of code lines (C::B >400k)

● Custom build for Linux and Windows
and more useful information for
Fortran users on:

http://cbfortran.sourceforge.net

Settings->Editor...

 4

Code organization using the IDE

● User files are grouped into workspaces, projects and targets

Workspace

Project 1

Build target 1 Build target 2

Fi
le

 1

Fi
le

 2

Fi
le

 3

Fi
le

 4
Project 2

 5

Editor
● Syntax highlighting (for free and

fixed source code forms)

● Code folding

● Occurrences highlighting: highlights
selected word in editor

● Fortran construct highlighter

● Keyboard shortcuts adjustment
(Settings Editor Keyboard shortcuts)→Editor→Keyboard shortcuts) →Editor→Keyboard shortcuts)

 6

Code completion

● Is shown when you type or on
 “Ctrl+Space”

● Code completion for:
– Keywords

– Defined variables, procedures

– Derived type components

– Type-bound procedures

● Follows use-association

● Uses logic to make CC list
shorter (smart code-
completion)

Settings→Editor→Keyboard shortcuts)Editor

 7

Call-tips, tool-tips

● Call-tips: show information
about dummy arguments
(Shift+Ctrl+Space)

● Tool-tips: are shown when
mouse is kept over item

 8

Auto-complete, auto-insert

● Auto-complete:
– Replaces typed keyword with the

predefined code
– Invoked by typing one of the keywords and

pressing “Ctrl+J” (Edit Auto-complete)→Editor→Keyboard shortcuts)
– Change, add new:

Settings Editor Abbreviations→Editor→Keyboard shortcuts) →Editor→Keyboard shortcuts)

● Auto-insert:
– Inserts “end...” after “do”, “if(…)then” etc.
– Options: Settings Editor FortranProject, →Editor→Keyboard shortcuts) →Editor→Keyboard shortcuts)

Auto insert tab

Not code-completion!

 9

Symbols Browser

● Displays defined items in a
workspace, an active project or a
current file:

– Global and module procedures

– Modules

– Submodules

– Local variables

● Recognizes public/private items

● Item, where the cursor is, is marked
in bold

● Double-click to go to the declaration

 10

Compilation

● Code compilation from within IDE

● IDE’s build-in build system is used

● Takes care of dependencies between
Fortran files

● If possible, several files are compiled
at the same time

● Possibility to use external makefiles

● Compiler support: Gfortran, Intel,
PGI, Oracle Fortran

● Additional compilers can be added by
users

Settings→Editor→Keyboard shortcuts)Compiler

 11

Debugging

● Debugging with GDB debugger

● Watches window

● GDB command prompt

● CBFortran custom build:

– Improvement through use of Python
pretty printer

– Possibility to visualize 1D and 2D
arrays with Gnuplot

● More info:

http://cbfortran.sourceforge.net/debugging

 12

Call/Called-by tree

● Shows called/calling procedures in
a tree

● Enables easy navigation in the
code

● To show: right-click on a procedure
or module name and choose
“Show Call tree/Called-By tree”→Editor→Keyboard shortcuts)

● If build takes too long, decrease
“Call tree depth limit” on
FortranProject setting dialog

 13

Navigation in code

● BrowseTracker plugin:

– Tracks mouse clicks

– Menu: View Jump Jump Back / Jump Fwrd→Editor→Keyboard shortcuts) →Editor→Keyboard shortcuts)

– BrowserTracker toolbar

● Go to the previous files: “Alt+Left”

● Right-click “Jump to ‘Name’”

● Call/Called-By tree

 14

Code refactoring

● Change case:
– Change case for keywords and/or other names

● Tab2space:
– replaces tabs with spaces

– useful for fixed form source code

● Format indent:
– adjusts indentation of the code

– originally developed as a separate plugin by YWX
(wxFortranIndent@163.com)

All refactoring tools are found in Fortran menu

mailto:wxFortranIndent@163.com

 15

Generation of makefile

● Generates a makefile for current project

● Access through Fortran menu

● Generated makefile can be used only on
Linux (does anybody need it on Windows?)

 16

BindTo tool

● Generates a wrapper code for Fortran to be called from C and Python

● More about BindTo: http://cbfortran.sourceforge.net/bindto/

Fortran code

Fortran wrapper code

C headers

Cython code
(to be called from Python)

BindTo

 17

Demonstration in Code::Blocks

 18

Ongoing work: a problem

The Fortran Template Library (FTL)
https://github.com/SCM-NV/ftl

Implements:
generic containers, algorithms,

 string manipulation

 typedef std::vector<int> ftlDynArrayInt

https://github.com/SCM-NV/ftl

 19

Ongoing work: a solution

● Implementation of preprocessor directives

20

Thank you for your attention!

Milian Curcic: “Fortran should feel like play and not work”

Try ;)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

